Handwritten Javanese Character Recognition Using Several Artificial Neural Network Methods

نویسندگان

  • Gregorius Satia Budhi
  • Rudy Adipranata
چکیده

Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary characters, and so on. In this research we have developed a system to recognize Javanese characters. Input for the system is a digital image containing several handwritten Javanese characters. Preprocessing and segmentation are performed on the input image to get each character. For each character, feature extraction is done using the ICZ-ZCZ method. The output from feature extraction will become input for an artificial neural network. We used several artificial neural networks, namely a bidirectional associative memory network, a counterpropagation network, an evolutionary network, a backpropagation network, and a backpropagation network combined with chi2. From the experimental results it can be seen that the combination of chi2 and backpropagation achieved better recognition accuracy than the other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

Optical Character Recognition Using 26-Point Feature Extraction and ANN

We present in this paper a system of English handwriting recognition based on 26-point feature extraction of the character. Basically an off-line handwritten alphabetical character recognition system using multilayer feed forward neural network has been described in our work. Firstly a new method, called, 26-point feature extraction is introduced for extracting the features of the handwritten a...

متن کامل

Optical Character Recognition using 40-point Feature Extraction and Artificial Neural Network

We present in this paper a system of English handwriting recognition based on 40-point feature extraction of the character. Basically an off-line handwritten alphabetical character recognition system using multilayer feed forward neural network has been described in our work. Firstly a new method, called, 40-point feature extraction is introduced for extracting the features of the handwritten a...

متن کامل

Handwritten Character Recognition with Feedback Neural Network

The ability of a machine to interpret handwritten characters from sources like paper document, photograph, etc. to some editable computerized form is the first and foremost aim of handwritten character recognition systems. Several challenges are there to construct this kind of systems, including the tasks eg. Digitization, segmentation, normalization, feature extraction, reorganization, and rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015